On Vietoris–Rips complexes of ellipses

Author:

Adamaszek Michał1,Adams Henry2,Reddy Samadwara3

Affiliation:

1. Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

2. Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

3. Department of Mathematics, Duke University, Durham, NC 27708, USA

Abstract

For [Formula: see text] a metric space and [Formula: see text] a scale parameter, the Vietoris–Rips simplicial complex [Formula: see text] (resp. [Formula: see text]) has [Formula: see text] as its vertex set, and a finite subset [Formula: see text] as a simplex whenever the diameter of [Formula: see text] is less than [Formula: see text] (resp. at most [Formula: see text]). Though Vietoris–Rips complexes have been studied at small choices of scale by Hausmann and Latschev [13,16], they are not well-understood at larger scale parameters. In this paper we investigate the homotopy types of Vietoris–Rips complexes of ellipses [Formula: see text] of small eccentricity, meaning [Formula: see text]. Indeed, we show that there are constants [Formula: see text] such that for all [Formula: see text], we have [Formula: see text] and [Formula: see text], though only one of the two-spheres in [Formula: see text] is persistent. Furthermore, we show that for any scale parameter [Formula: see text], there are arbitrarily dense subsets of the ellipse such that the Vietoris–Rips complex of the subset is not homotopy equivalent to the Vietoris–Rips complex of the entire ellipse. As our main tool we link these homotopy types to the structure of infinite cyclic graphs.

Funder

Experimental Mathematics in Number Theory, Operator Algebras, and Topology Villum Fonden (DK)

Institute for Mathematics its Applications, National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Geometry and Topology,Analysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Persistent Homology with Selective Rips Complexes Detects Geodesic Circles;Mediterranean Journal of Mathematics;2024-08-07

2. Vietoris–Rips persistent homology, injective metric spaces, and the filling radius;Algebraic & Geometric Topology;2024-04-12

3. The persistent topology of optimal transport based metric thickenings;Algebraic & Geometric Topology;2024-03-18

4. Critical Edges in Rips Complexes and Persistence;Mediterranean Journal of Mathematics;2023-11-03

5. Vietoris thickenings and complexes are weakly homotopy equivalent;Journal of Applied and Computational Topology;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3