A Poisson transform adapted to the Rumin complex

Author:

Čap Andreas1,Harrach Christoph1,Julg Pierre2

Affiliation:

1. Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

2. MAPMO UMR 7349, Fédération Denis Poisson, Université d’Orléans, Collegium Sciences et Techniques, Bâtiment de Mathématiques, Route de Chartres, B. P. 6759, 45067 Orléans Cedex 2, France

Abstract

Let [Formula: see text] be a semisimple Lie group with finite center, [Formula: see text] a maximal compact subgroup, and [Formula: see text] a parabolic subgroup. Following ideas of P. Y. Gaillard, one may use [Formula: see text]-invariant differential forms on [Formula: see text] to construct [Formula: see text]-equivariant Poisson transforms mapping differential forms on [Formula: see text] to differential forms on [Formula: see text]. Such invariant forms can be constructed using finite-dimensional representation theory. In this general setting, we first prove that the transforms that always produce harmonic forms are exactly those that descend from the de Rham complex on [Formula: see text] to the associated Bernstein–Gelfand–Gelfand (or BGG) complex in a well defined sense. The main part of this paper is devoted to an explicit construction of such transforms with additional favorable properties in the case that [Formula: see text]. Thus, [Formula: see text] is [Formula: see text] with its natural CR structure and the relevant BGG complex is the Rumin complex, while [Formula: see text] is complex hyperbolic space of complex dimension [Formula: see text]. The construction is carried out both for complex and for real differential forms and the compatibility of the transforms with the natural operators that are available on their sources and targets are analyzed in detail.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geometry and Topology,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3