ESTIMATES AND COMPUTATIONS IN RABINOWITZ–FLOER HOMOLOGY

Author:

ABBONDANDOLO ALBERTO1,SCHWARZ MATTHIAS2

Affiliation:

1. Università di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

2. Universität Leipzig, Mathematisches Institut, Postfach 100920, D-04009 Leipzig, Germany

Abstract

The Rabinowitz–Floer homology of a Liouville domain W is the Floer homology of the Rabinowitz free period Hamiltonian action functional associated to a Hamiltonian whose zero energy level is the boundary of W. This invariant has been introduced by K. Cieliebak and U. Frauenfelder and has already found several applications in symplectic topology and in Hamiltonian dynamics. Together with A. Oancea, the same authors have recently computed the Rabinowitz–Floer homology of the cotangent disk bundle D* M of a closed Riemannian manifold M, by means of an exact sequence relating the Rabinowitz–Floer homology of D* M with its symplectic homology and cohomology. The first aim of this paper is to present a chain level construction of this exact sequence. In fact, we show that this sequence is the long homology sequence induced by a short exact sequence of chain complexes, which involves the Morse chain complex and the Morse differential complex of the energy functional for closed geodesics on M. These chain maps are defined by considering spaces of solutions of the Rabinowitz–Floer equation on half-cylinders, with suitable boundary conditions which couple them with the negative gradient flow of the geodesic energy functional. The second aim is to generalize this construction to the case of a fiberwise uniformly convex compact subset W of T* M whose interior part contains a Lagrangian graph. Equivalently, W is the energy sublevel associated to an arbitrary Tonelli Lagrangian L on TM and to any energy level which is larger than the strict Mañé critical value of L. In this case, the energy functional for closed geodesics is replaced by the free period Lagrangian action functional associated to a suitable calibration of L. An important issue in our analysis is to extend the uniform estimates for the solutions of the Rabinowitz–Floer equation — both on cylinders and on half-cylinders — to Hamiltonians which have quadratic growth in the momenta. These uniform estimates are obtained by the Aleksandrov integral version of the maximum principle. In the case of half-cylinders, they are obtained by an Aleksandrov-type maximum principle with Neumann conditions on part of the boundary.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geometry and Topology,Analysis

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3