Electrical Stimulation: Enhancing Axonal Growth following Peripheral Nerve Injury

Author:

HOROWITZ Roy S.1,RANDALL Zachary D.2,DY Christopher J.2

Affiliation:

1. Hadassah Medical Center, Jerusalem, Israel

2. Washington University School of Medicine, Saint Louis, MO, USA

Abstract

Electrical stimulation has been integrated in recent decades into rehabilitation protocols following neuromuscular injuries. Existing literature supports the utilisation of prolonged or continuous stimulation generated by implantable or transcutaneous devices for chronic pain subsidence and muscle trophism maintenance, which improve outcomes following microsurgical interventions. Newer uses include brief electrical stimulation for peripheral nerve injury. Brief electrical stimulation has shown promise in expediting regeneration of both torn and crushed nerve axons in the murine model and has been incorporated into a limited number of clinical studies. Augmentation of the natural response of an injured peripheral nerve by electrical stimulation has the potential to accelerate regeneration, presumably leading to improved function and clinical outcomes. We review the existing literature on intraoperative utilisation of electrical stimulation to enhance regeneration, such as neural mechanisms of action and their microscopic effect in animal models, as well as results from initial human studies. Level of Evidence: Level V (Therapeutic)

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3