Affiliation:
1. College of Music, Chengdu Normal University, Chengdu 611130, P. R. China
2. Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
Abstract
Music listening is one of the most enigmatic of human mental phenomena; it not only triggers emotions but also changes our behavior. During the music session many people are observed to exhibit varying emotional response, which can be influenced by diverse factors such as music genre and instrument as well as the personal attributes of audiences. In this study, we assume that there is an intrinsic, complex and implicit relationship between the basic sound features of music and human emotional response to the music. The response levels of 12 individuals to a representative repertoire of 36 classical/popular Chinese traditional music (CTM) are systematically analyzed using the chills as a quantitative indicator, totally resulting in 432 ([Formula: see text]) CTM–individual pairs that define a systematic individual-to-music response profile (SPTMRP). Gaussian process (GP) is then employed to model the multivariate correlation of SPTMRP profile with 15 sound features (including 5 Timbres, 4 Rhythms and 6 Pitchs) and 5 individual features in a supervised manner, which is also improved by genetic algorithm (GA) feature selection and compared with other machine learning methods. It is shown that the built GP regression model possesses a strong internal fitting ability ([Formula: see text]) and a good external predictive power ([Formula: see text]), which performed much better than linear PLS and nonlinear SVM and RF, confirming that the human emotional response to music can be quantitatively explained by GP methodology. Statistical examination of the GP model reveals that the sound features contribute more significantly to emotional response than individual features; their importance increases in the order: [Formula: see text], in which the spectral centroid (SC), relative amplitude of salient peaks (RASP), ratio of peak amplitudes (RPA), sum of all rhythm histograms (SARH) and period of unfolded maximum peak (PUMP) as well as gender are primarily responsible for the response.
Funder
chengdu philosophy and social science planning project
key projects of chengdu normal university
Publisher
World Scientific Pub Co Pte Ltd
Subject
Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献