ENHANCING THE RESILIENCE OF NETWORKED AGENTS THROUGH RISK SHARING

Author:

NAMATAME AKIRA1,TRAN HOANG ANG Q.1

Affiliation:

1. Department of Computer Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan

Abstract

Since social-economic systems increase interdependency, a crucial question arises: Is an interconnected world a safer or a more dangerous place to live? Over the last few years, we have witnessed the dark side of increasing interdependencies. As such, there is a growing need to focus on how to mitigate networked risk and to enhance the system resilience to the impact of a large-scale shock. The traditional engineering approach has been to design systems that are less vulnerable to damage from hazard events. On the other hand, system resilience is the ability to recover from failure and provide the continuity of system function. The goal of the present paper is to investigate the gain from risk sharing. We propose a mechanism of risk sharing that may enhance the resilience of the networked systems. The proposed risk sharing protocols are based on coordinated incentives of agents to survive collectively by absorbing external shocks. The key issue we would like to analyze is how the gain from risk sharing depends on the capacity of each agent to absorb shock and on the interconnections patterns among agents with risk sharing rules. We demonstrate that risk sharing is beneficial from a systems point of view when the agents' capacities to shocks is high and detrimental when it is low. In particular, we evaluate the effectiveness of risk sharing in two domains. In the first domain, in which networked agents have the possibility of cascading failure, risk sharing is useful in mitigating systemic failure, especially if the agents are running at high load. In the second domain, we evaluate the ratio of safe agents who invest in risky portfolios or projects collectively. In this case, risk sharing is only beneficial if the agents' risk absorbing capacity is high.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EFFECT OF TRAFFIC DEMAND VARIATION ON ROAD NETWORK RESILIENCE;Advances in Complex Systems;2016-02

2. Agent-Based Modeling of Economic Volatility and Risk Propagation on Evolving Networks;Proceedings in Adaptation, Learning and Optimization;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3