Affiliation:
1. Institute for Mathematical Behavioral Sciences, University of California, Irvine, Irvine, CA 92697-5100, USA
Abstract
Evolutionary game theory is used to form a finite partition of a continuous hue circle in which perceptually similar hues are each represented by an icon chip and the circle by a finite but game dynamically determined number of icon chips. On the basis of such icon chip structures, a color categorization for both an individual learner and a population of learners is then evolved. These results remove limitations of some particular previous color categorization simulation work which assumed a fixed number of color stimuli and a maximal number of predefined color categories. These simulations are extended to demonstrate that learners need neither to share the same icon chip structures, nor do these structures have to be fully developed for a population of learners to produce a stable color categorization system. Additionally, when a naïve learner is introduced into a population with a stable color categorization, the game dynamics result in the learner's adopting the existing categorization. All results are shown to hold while the underlying icon chip structures evolve continuously in response to novel stimuli. The usefulness of the approach as well as some of the potential implications of the results for human learning of color categories are discussed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献