OPINION-AWARE INFLUENCE MAXIMIZATION: HOW TO MAXIMIZE A FAVORITE OPINION IN A SOCIAL NETWORK?

Author:

KERMANI MEHRDAD AGHA MOHAMMAD ALI1,GHESMATI REZA2,JALAYER MASOUD3

Affiliation:

1. Department of Process Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran

2. Amirkabir University of Technology, Tehran 15875-4413, Iran

3. Politecnico Di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

Influence maximization is a well-known problem in the social network analysis literature which is to find a small subset of seed nodes to maximize the diffusion or spread of information. The main application of this problem in the real-world is in viral marketing. However, the classic influence maximization is disabled to model the real-world viral marketing problem, since the effect of the marketing message content and nodes’ opinions have not been considered. In this paper, a modified version of influence maximization which is named as “opinion-aware influence maximization” (OAIM) problem is proposed to make the model more realistic. In this problem, the main objective is to maximize the spread of a desired opinion, by optimizing the message content, rather than the number of infected nodes, which leads to selection of the best set of seed nodes. A nonlinear bi-objective mathematical programming model is developed to model the considered problem. Some transformation techniques are applied to convert the proposed model to a linear single-objective mathematical programming model. The exact solution of the model in small datasets can be obtained by CPLEX algorithm. For the medium and large-scale datasets, a new genetic algorithm is proposed to cope with the size of the problem. Experimental results on some of the well-known datasets show the efficiency and applicability of the proposed OAIM model. In addition, the proposed genetic algorithm overcomes state-of-the-art algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3