DESIGN OF CONTROLLABLE LEADER–FOLLOWER NETWORKS VIA MEMETIC ALGORITHMS

Author:

XIAO SHAOPING1ORCID,SHE BAIKE2,MEHTA SIDDHARTHA3,KAN ZHEN4

Affiliation:

1. Department of Mechanical Engineering, University of Iowa, Iowa Technology Institute (Formerly CCAD), Iowa City, IA 52242, USA

2. Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA

3. Department of Mechanical and Aerospace Engineering, University of Florida Research and Engineering Education Facility, Shalimar, FL 32579, USA

4. Department of Automation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

Abstract

In many engineered and natural networked systems, there has been great interest in leader selection and/or edge assignment during the optimal design of controllable networks. In this paper, we present our pioneering work in leader–follower network design via memetic algorithms, which focuses on minimizing the number of leaders or the amount of control energy while ensuring network controllability. We consider three problems in this paper: (1) selecting the minimum number of leaders in a pre-defined network with guaranteed network controllability; (2) selecting the leaders in a pre-defined network with the minimum control energy; and (3) assigning edges (interactions) between nodes to form a controllable leader–follower network with the minimum control energy. The proposed framework can be applied in designing signed, unsigned, directed, or undirected networks. It should be noted that this work is the first to apply memetic algorithms in the design of controllable networks. We chose memetic algorithms because they have been shown to be more efficient and more effective than the standard genetic algorithms in solving some optimization problems. Our simulation results provide an additional demonstration of their efficiency and effectiveness.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3