Affiliation:
1. Centre for Robotics and Neural Systems, University of Plymouth, A318 Portland Square, Plymouth, PL4 8AA, United Kingdom
Abstract
The problem of how young learners acquire the meaning of words is fundamental to language development and cognition. A host of computational models exist which demonstrate various mechanisms in which words and their meanings can be transferred between a teacher and learner. However these models often assume that the learner can easily distinguish between the referents of words, and do not show if the learning mechanisms still function when there is perceptual ambiguity about the referent of a word. This paper presents two models that acquire meaning-word mappings in a continuous semantic space. The first model is a cross-situational learning model in which the learner induces word-meaning mappings through statistical learning from repeated exposures. The second model is a social model, in which the learner and teacher engage in a dyadic learning interaction to transfer word-meaning mappings. We show how cross-situational learning, despite there being no information to the learner as to the exact referent of a word during learning, still can learn successfully. However, social learning outperforms cross-situational strategies both in speed of acquisition and performance. The results suggest that cross-situational learning is efficient for situations where referential ambiguity is limited, but in more complex situations social learning is the more optimal strategy.
Publisher
World Scientific Pub Co Pte Lt
Subject
Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献