SELF-ORGANIZATION IN COMPLEX SYSTEMS AS DECISION MAKING

Author:

YUKALOV V. I.12,SORNETTE D.13

Affiliation:

1. Department of Management, Technology and Economics, ETH Zürich, Swiss Federal Institute of Technology, Scheuchzerstrasse 7, Zürich CH-8092, Switzerland

2. Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

3. Swiss Finance Institute, c/o University of Geneva, 40 Blvd. Du Pont d'Arve, CH 1211 Geneva 4, Switzerland

Abstract

The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mathematical structures of self-organization and of decision making are identical. This makes it clear how self-organization can be seen as an endogenous decision making process and, reciprocally, decision making occurs via an endogenous self-organization. The approach is illustrated by phase transitions in large statistical systems, crossovers in small statistical systems, evolutions and revolutions in social and biological systems, structural self-organization in dynamical systems, and by the probabilistic formulation of classical and behavioral decision theories. In all these cases, self-organization is described as the process of evaluating the probabilities of macroscopic states or prospects in the search for a state with the largest probability. The general way of deriving the probability measure for classical systems is the principle of minimal information, that is, the conditional entropy maximization under given constraints. Behavioral biases of decision makers can be characterized in the same way as analogous to quantum fluctuations in natural systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3