CONTROL ENERGY AND CONTROLLABILITY OF MULTILAYER NETWORKS

Author:

WANG DINGJIE12,ZOU XIUFEN12

Affiliation:

1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China

2. Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, P. R. China

Abstract

The controllability of multilayer networks has become increasingly important in many areas of science and engineering. In this paper, we identify the general rules that determine the controllability and control energy cost of multilayer networks. First, we quantitatively estimate the control energy cost of multilayer networks and investigate the impacts of different coupling strength and coupling patterns on the control energy cost for multilayer networks. The results indicate that the average energy and the coupling strength have an approximately linear relationship in multilayer networks with two layers. Second, we study how the coupling strength and the connection patterns between different layers affect the controllability of multilayer networks from both theoretical and numerical aspects. The obtained piecewise functional relations between the controllability’s measure and coupling strength reveal the existence of an optimal coupling strength for the different interconnection strategies in multilayer networks. In particular, the numerical experiments demonstrate that there exists a tradeoff between the optimal controllability and optimal control energy for selecting interlayer connection patterns in multilayer networks. These results provide a comprehensive understanding of the impact of interlayer couplings on the controllability and control energy cost for multilayer networks and provide a methodology for selecting the control nodes and coupling strength to maximize the controllability and minimize the control energy cost.

Funder

The Major Research Plan of the National Natural Science Foundation of China

The Chinese National Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber resilience assessment and enhancement of cyber-physical systems: structural controllability perspective;International Journal of Systems Science;2024-02-06

2. Controllability of Multi-Agent Systems With Cartesian Product Networks;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-02

3. Controllability of Cartesian Product Signed Networks;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2023-11

4. Input node placement restricting the longest control chain in controllability of complex networks;Scientific Reports;2023-03-07

5. The Metaverse;Digital Token Valuation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3