Affiliation:
1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. School of Science, Lanzhou University of Technology, Lanzhou 730050, China
Abstract
We have attempted to study how viscous flux flow affects the crack–inclusion interaction in a long rectangular slab of superconductor during the decreasing field stage under zero-field cooling (ZFC) magnetization process systematically. After some manipulation, the effect of viscous flux flow on the crack–inclusion problem within the superconductor is discussed base on J-integral theory. The simulated results indicate that with the increase of viscous flux flow, the stress intensity factor will increase correspondingly, but the trend of the curve with the elastic modulus, crack length and inclusion radius does not change, associated with the distance between the left crack tip and the inclusion. Compared with viscous flux flow, the effect of the crack length on crack propagation may be more significant under a lower viscous flux flow rate. However, at the higher viscous flux flow, the opposite is true.
Funder
Natural Science Foundation of Jilin Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献