A novel two-lane lattice hydrodynamic model on a gradient road considering heterogeneous traffic flow

Author:

Liu Huimin123,Cheng Rongjun123ORCID,Ge Hongxia123

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

2. Jiangsu Province Collaborative Innovation Center for Modern Urban Traffic Technologies, Nanjing 210096, China

3. National Traffic Management Engineering and Technology Research Centre, Ningbo University Sub-Centre, Ningbo 315211, China

Abstract

In the actual traffic, there are not only cars, but also buses, trucks and other vehicles. These vehicles with different maximum speeds or security headway or both are interspersed irregularly to form a heterogeneous traffic flow. In addition, most of the maximum speed of modern cars is hardly affected by gradients due to the fact that the car engine and brakes are rarely operated at their max while the maximum speed of trucks is affected. Considering that the performance of various types of vehicles is multifarious and the vehicles sometimes drive on the road with slopes, a novel two-lane lattice hydrodynamic model on a gradient road considering heterogeneous traffic flow is proposed in this paper. In order to verify the rationality of the model, the linear stability analysis is carried out first, that is, the linear stability conditions are derived from the linear stability theory and the stability curve is drawn accordingly. The results of the above analysis prove that the three factors studied in this paper, namely, time lane change, slope and mixing of different types of vehicles, all have a significant influence on the stability of traffic flow. The modified Korteweg–de Vries (mKdV) equation is deduced by the nonlinear analysis method, which can describe the propagation characteristics of the traffic density waves near the critical point. Last but not least, the numerical simulation for new model is conducted and the numerical simulation results obtained are in good agreement with theoretical ones. In summary, increasing the lane changing rate or the slope on the uphill can improve the traffic flow stability. What is more, increasing the slope can lower the traffic flow stability on the downhill. Finally, in the heterogeneous traffic flow of different types of vehicles, the vehicles with larger security headway will make traffic flow difficult to stabilize, as do the vehicles with larger maximum speed.

Funder

the Program of Humanities and Social Science of Education Ministry of China

Ningbo Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

K. C. Wong Magna Fund in Ningbo University, China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3