Affiliation:
1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract
A new type of nonlinear sub-grid scale (SGS) model is adopted based on the helicity analysis and is verified by predicting the internal flow in a rotating channel. A stress term that contains helicity constraint is introduced into the original SGS model to construct a nonlinear sub-grid model. This additional term representing the helicity constraint effect in the momentum equations is shown to give predictions that are in better agreement with the experimental data. In this paper, the Detached-Eddy Simulation (DES) and the nonlinear SGS model are used to further study the turbulence statistics of the rotating channel flow. Combining with the Reynolds stress transport equations and the turbulent kinetic energy transport equation, the change of turbulence statistics near the wall of the rotating channel is analyzed. The newly added term changes the turbulent viscosity near the wall, which changes the velocity gradient near the wall and further affects other turbulence statistics near the wall.
Funder
National Natural Science Foundation of China
Key R&D Program of Zhejiang Province
521 Talents Fostering Program Funding of Zhejiang Sci-Tech University of China.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献