Numerical framework of magnetized thermal Casson nanoliquid flow with time-dependent stretching channel enclosing chemical reaction effect and variable fluid properties: A Particle Swarm Optimization with stability

Author:

Alammari Maha1ORCID

Affiliation:

1. Department of Mathematics, College of Science, King Saud University, P. O. Box 22452, Riyadh 11495, Saudi Arabia

Abstract

Nanofluids are a relatively new class of materials that have gained attention in recent years due to their unique physical and thermal properties. They are used as contrast agents in biomedicine, including for magnetic resonance imaging (MRI) and computed tomography (CT). Keeping the above applications in mind, this theoretical study intended to explore the consequence of transient magnetized Casson nanoliquid driven by a permeable bi-direction time-dependent stretching platform positioned inclined subject to nonlinear heat source/sink. The Brownian movement, thermophoretic force, chemical reaction, and variable internal heating impacts are incorporated into the proposed flow problem. The leading constitutive PDEs are diminished into coupled nonlinear self-similar dimensionless ODEs through pertinent non-dimensional quantities. The resulting problems are addressed utilizing “Particle Swarm Optimization (PSO)” and a hybrid shooting methodology inspired by the Runge–Kutta four (RK4) method. The novelty of this work is the investigation of the numerical solution of magnetized Casson nanoliquid enclosing thermal radiation and chemical reaction via PSO along with hybrid shooting technique over time-dependent stretching sheet, which has not been elaborated on to date. The physical appearance of relevant physical factors on different flow phenomena are evaluated via graphs. For the stability purpose of the numerical method Average Square Residue Error (ASRE) and Total Average Square Residue Error (TASRE) are computed. For the validation purpose the present work is associated with the available work and great correlation is found.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3