MECHANICAL FLEXIBILITY OF ZINC OXIDE THIN-FILM TRANSISTORS PREPARED BY TRANSFER PRINTING METHOD

Author:

EUN K. T.1,HWANG W. J.1,SHARMA B. K.2,AHN J. H.2,LEE Y. K.1,CHOA S. H.1

Affiliation:

1. Graduate School of NID Fusion Technology, Seoul National University of Science and Technology, 172 Gongneung-2dong, Nowon-gu, Seoul, 139-743, Korea

2. School of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon, 440-746, Korea

Abstract

In the present study, we demonstrate the performance of Zinc oxide thin film transistors ( ZnO TFTs) array subjected to the strain under high bending test and the reliability of TFTs was confirmed for the bending fatigue test of 2000 cycles. Initially, ZnO TFTs were fabricated on Si substrate and subsequently transferred on flexible PET substrate using transfer printing process. It was observed that when the bending radius reached ≥ 11 mm then cracks start to initiate first at SiO 2 bridges, acting as interconnecting layers among individual TFT. Whatever the strain is applied to the devices, it is almost equivalently adopted by the SiO 2 bridges, as they are relatively weak compared to rest of the part. The initial cracking of destructed SiO 2 bridge leads to the secondary cracks to the ITO electrodes upon further increment of bending radius. Numerical simulation suggested that the strain of SiO 2 layer reached to fracture level of 0.55% which was concentrated at the edge of SiO 2 bridge layer. It also suggests that the round shape of SiO 2 bridge can be more fruitful to compensate the stress concentration and to prevent failure of device.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3