Study on electromagnetic characteristics of plasma model-based on the symplectic multiresolution time-domain scheme

Author:

Ma Zhu1,Wei Min1ORCID,Li Meng1,Xu Wenbin1

Affiliation:

1. School of Electrical Engineering and Automation, The Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China

Abstract

A novel numerical computation scheme, which is symplectic multiresolution time-domain (S-MRTD) scheme, for modeling plasma model is proposed. The loss plasma dispersive model is taken into account in S-MRTD scheme, and the detailed formulations of the proposed S-MRTD scheme are also provided. A one-dimensional perfectly matched layers (PML) are used to terminate the computational domain. The analyses of stability and numerical dispersion demonstrate that S-MRTD scheme is more efficient than traditional finite-different time-domain (FDTD) and MRTD methods. The energy conservation characteristics of S-MRTD scheme in electromagnetic simulation are proved by the propagation of pulse in free space for long-term simulation. In the end, the S-MRTD formulations are confirmed by computing the electric field intensity, reflection and the transmission coefficients for the pulse wave through an unmagnetized plasma slab. A favorable agreement between the numerical solutions is demonstrated, and the efficiency of the proposed scheme is verified. Meanwhile, numerical results show that plasma frequency, collision frequency and thickness are important factors affecting reflection and transmission coefficients.

Funder

National Natural Science Foundation of China

University Natural Science Research Project of Anhui Province

the Doctoral Scientific Research Foundation of Anhui University

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3