Antiresonance in electron transport through a four quantum dots system

Author:

He Zelong12,Chen Kongfa3,Bai Jiyuan1,Li Yadong1

Affiliation:

1. School of Electronic and Information Engineering, Yangtze Normal University, Chongqing 408003, China

2. Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China

3. College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China

Abstract

A four quantum dots structure is designed. The influence of the interdot coupling strength, energy levels of quantum dots, magnetic flux and intradot Coulomb interactions on the conductance is discussed. An antiresonance point exactly emerges at the location of the energy level of side-coupled quantum dots (SCQD). The conversion between resonance band and antiresonance band can be achieved as parallel-coupled di-quantum dots with or without SCQD, which suggests a physical scheme of an effective quantum switch. The Breit–Wigner resonant and Fano antiresonant peaks may merge into one resonant band. By means of the mathematical formula, we analyze how the resonance band is formed. By varying intradot Coulomb interaction, the resonance band may evolve into a Fano antiresonance with an ultra-narrow width. This study provides theoretical basis for the design of quantum computing devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Chongqing Education Commission Science and Technology Project

Scientific Research Project for Advanced Talents of Yangtze Normal University

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3