The anomalous electronic structure of electron-doped cuprate superconductors by considering the next higher harmonics of the superconducting gap

Author:

Qin Jihong1ORCID

Affiliation:

1. Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Based on the self-consistent mean field theory by considering the next higher harmonics of the superconducting (SC) gap, we discuss the energy and momentum dependence of the electron spectrum in electron-doped cuprate superconductors. By calculation of the electron spectral function, it is shown that the weight of the electron spectrum at the Fermi energy is strongly redistributed by the next higher harmonics of the SC gap in electron-doped cuprate superconductors, especially for the antinodal region. At the antinodal region, the weight of the electron spectrum at the Fermi surface increases with the increase of next higher harmonics term, reaches the maximum at a critical strength, then decreases when the next higher harmonics is larger. Our theoretical results show that the variation of the SC gap with the next higher harmonics can explain the anomalous behavior of the electron spectrum and different angle-resolved photoemission spectroscopy experimental results of different samples of electron-doped cuprate superconductors. Moreover, the magnitude of the SC gap can be suppressed by the next higher harmonics, which may be one of the reasons for the smaller SC gap in electron-doped cuprate superconductors. Obvious topological change happens in the SC gap at a critical strength of the next higher harmonics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Beijing Higher Education Young Elite Teacher Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3