The gas-sensing and structure properties of Fe-doped In2O3 nanotubes by electrospinning technique

Author:

Zhou Jing1,Shen Hongzhi2,Feng Guanlin3,Xu Dapeng4

Affiliation:

1. National Engineering Research Center for Rare Earth Materials, General Research Institute for Non-ferrous Metals and Grirem Advanced Materials Co. Ltd., Beijing 100088, China

2. College of Electronic Science and Engineering, Jilin University, Changchun 130000, China

3. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China

4. College of Physics, Jilin University, Changchun 130000, China

Abstract

Fe-doped In2O3 nanotubes were successfully synthesized by electrospinning technique followed by subsequent heat treatment. The as-prepared samples appeared as an apparently open-end one-dimensional (1D) and tubular-like morphology with the diameter of approximately 150 nm and the wall thickness about 20 nm. The diffraction peak of the obtained nanotubes shifts toward bigger angle direction with the increase of the Fe content. Comparing to the In2O3 nanotubes, the Fe-doped In2O3 nanotubes exhibit better sensing characteristics toward ethanol gases, including higher sensing response, lower operating temperature and higher selectivity. Enhanced sensing properties are attributed to 1D hollow nanostructures and the role of doping Fe element.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3