Investigation of soliton solutions to the Peyrard-Bishop-Deoxyribo-Nucleic-Acid dynamic model with beta-derivative

Author:

Secer Aydin1ORCID,Ozisik Muslum2ORCID,Bayram Mustafa1ORCID,Ozdemir Neslihan3ORCID,Cinar Melih2ORCID

Affiliation:

1. Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey

2. Computer Engineering, Biruni University, Istanbul, Turkey

3. Software Engineering, Istanbul Gelisim University, Istanbul, Turkey

Abstract

This study purposes to extract some fractional analytical solutions of the Peyrard-Bishop-Deoxyribo-Nucleic-Acid ([Formula: see text]-PBDNA) dynamic model with the beta-derivative by the unified Riccati equation expansion method (UREEM). Furthermore, we examine the role of various parameters of the fractional model on the soliton dynamic. The research focuses on computational biophysics and materials science, examining the impact of various parameters on the fractional model. This paper contributes to understanding soliton solutions and the [Formula: see text]-PBDNA dynamic model, demonstrating the applicability of the UREEM method to various fractional models. Some soliton solutions of the model are successfully generated by applying the UREEM. Implementing the UREEM, we take a fractional wave transformation to convert the model into a nonlinear ordinary differential equation. So, a linear equation system is generated. After the system is solved, the soliton solutions are gained for the appropriate solution sets. Finally, 3D, 2D and contour graphs of diverse solutions are depicted at suitable values of parameters. In addition, this paper presents 3D, 2D and contour graphs of various solutions with suitable parameter values. The results are beneficial for interpreting the model in future work and confirm that UREEM is effectively applicable to diverse fractional models, coupled with a comprehensive graphical analysis of how different parameters influence these solutions.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3