Binding energies and photoionization cross-sections of donor impurities in GaN/AlxGa1−xN spherical quantum dot under hydrostatic pressure

Author:

Li Shuo1,Shi Lei1,Yan Zu-Wei1

Affiliation:

1. College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

In this paper, the binding energy and photoionization cross-section of donor impurity state in [Formula: see text] quantum dot structure are studied theoretically by using variational method. The variation of binding energy and photoionization cross-section with core and shell sizes at different impurity locations under hydrostatic pressure is calculated numerically. The results show that the binding energy decreases monotonously with the core size at different impurity locations for [Formula: see text] core/shell quantum dot. In contrast, for the inverted core/shell quantum dot, the binding energy exhibits different trends with the increase of core size at different impurity locations. But the binding energy decreases monotonically with the shell size for both of them. Moreover, when the photon energy is approximately equal to the donor binding energy, the peak of the photoionization cross-section appears. There will be different peak shifts under different conditions, and its peak intensity increases with the increase of core and shell sizes. When the hydrostatic pressure is applied, the binding energy and the peak strength of the photoionization cross-section increase with the increase of the pressure.

Funder

National Natural Science Foundation of PR China

Natural Science Foundation of Inner Mongolia

Science project of the Higher Education of Inner Mongolia Autonomous Region

Doctoral Starting up Foundation of Inner Mongolia Agricultural University

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3