A novel memristor-based chaotic system with line equilibria and its complex dynamics

Author:

Yan Dengwei1,Ji’e Musha1,Wang Lidan1,Duan Shukai2

Affiliation:

1. School of Electronic and Information Engineering Southwest University, Chongqing 400715, China

2. College of Artificial Intelligence, Southwest University, Chongqing 400715, China

Abstract

Memristor, as a nonlinear element, provides many advantages thanks to its superior properties to design different chaotic circuits. Thus, a novel four-dimensional double-scroll chaotic system with line equilibria as well as two unstable equilibria based on the flux-memristor model is proposed in this paper. The effects of initial values and parameters on the dynamic characteristics of the system are studied in detail by means of phase diagrams, Lyapunov exponent spectrums, bifurcation diagrams, two-parameter bifurcation diagrams and basins of attraction. Besides, a series of complex phenomena in the system, such as sustained chaos, bistability, transient chaos and coexisting attractors are observed, proving that the chaotic system has rich dynamic characteristics. Also, spectral entropy (SE) complexity algorithm and [Formula: see text] complexity algorithm based on structure complexity are adopted to analyze the complexity of the system. Additionally, PSPICE circuit simulation and Micro-Controller Unit (MCU) hardware experiment are carried out to verify the correctness of theoretical analysis and numerical simulation. Finally, the pulse chaos synchronization is achieved from the perspective of maximum Lyapunov exponent, and numerical simulations demonstrate the occurrence of the proposed system and practicability of the pulse synchronization control.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3