Affiliation:
1. Department of Applied Physics, South China Agricultural University, Guangzhou, Quangdong 510642, China
2. Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
Abstract
By introducing the attractive dipole–dipole interaction, we provide a proposal to buffer the matter-wave soliton in a one-dimensional discrete lattice, which is divided into three parts with different local potentials produced by the external field modulation. Our study shows that, for sufficiently small initial phase tilt of the matter wave and deep enough potential well, the soliton will be trapped in the lattice. Otherwise, the soliton will propagate through the lattice. It appears that under certain conditions such a condensate system acts as a buffer, which can be used to temporarily store the matter wave. Meanwhile, in this buffer, the matter-wave soliton performs an unidirectional propagation, which makes it serve as a matter wave diode. The norm distribution in the lattice with respect to the initial phase tilt of the input wave is discussed, and it suggests there exists a critical phase tilt, below which the soliton will be trapped in the lattice.
Funder
Special Funds for the Cultivation of Guangdong College Student' s Scientific and Technological Innovation
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献