First-principles study of oxygen and hydrogen adsorption on Pt(111) and PtML/Pd(111) surfaces

Author:

Nie J. L.1,Ao L.1,Zu X. T.1

Affiliation:

1. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

In this paper, first-principles calculations based on density functional theory (DFT) have been performed to investigate the adsorption of oxygen and hydrogen on [Formula: see text] and [Formula: see text] surfaces covered by monolayer (ML) of [Formula: see text]. The results have shown that the oxygen molecule tends to adsorb on fcc site on both surfaces at the coverage of 0.25 ML, which becomes degeneration with hcp site when the coverage increases to 1 ML. For both oxygen and hydrogen, the adsorption on [Formula: see text] surface are stronger than those on [Formula: see text] surface. The adsorption energy difference for oxygen on the two surfaces is [Formula: see text][Formula: see text]0.2 eV at the coverage of 1 ML, which increases to [Formula: see text][Formula: see text]0.6 eV with the coverage decreasing to 0.25 ML. The similar energy difference was also found for hydrogen adsorption. The density of states analysis have demonstrated the chemical interaction of adsorbed oxygen with both pure [Formula: see text] and [Formula: see text] surfaces with certain shift of [Formula: see text] states to lower level compared to isolated oxygen. For hydrogen adsorption, the hybridization of [Formula: see text] with [Formula: see text] states were observed for both surfaces, indicating the covalent bonding component of H–Pt bond.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3