Extract the network communities based on fuzzy clustering theory

Author:

Lin Zhenzhou1,Li Huijia2ORCID

Affiliation:

1. Nanjing University of Finance and Economics, Nanjing 210003, China

2. School of Management Science and Engineering, Central University of Finance and Economics, Beijing, 102206, China

Abstract

Community detection in complex networks is of great importance in analyzing the interaction patterns and group behaviors. However, the traditional method of community division divide each node in the network into a specific community, while may ignore its internal connection. In this paper, a new strategy that selects a fuzzy function and fuzzy threshold (FF-FT) was presented to discover community structure. Edge dense degree coefficient was introduced to calculate fuzzy relation between nodes, and Fast–Warshall algorithm was used to reduce the complexity of FF-FT. Through the theoretical analysis and the comparison of eight current well-known community detection algorithms on seven real networks and artificial networks with different parameters, the results show that the FF-FT algorithm has a good community detection performance.

Funder

National Natural Science Foundation of China

Technology Project Policy Guidance Program

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3