Affiliation:
1. College of Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
Abstract
In this paper, the intrinsic point defects in ZnO crystal have been studied by the approach that integrates first-principles, thermodynamic calculations and the contributions of vibrational entropy. With temperature increasing and oxygen partial pressure decreasing, the formation energies of oxygen vacancy [Formula: see text], zinc interstitial [Formula: see text] and zinc anti-site [Formula: see text] are decreasing, while it increases for zinc vacancy [Formula: see text], oxygen interstitial [Formula: see text] and oxygen anti-site [Formula: see text]. They are more sensitive to temperature than oxygen partial pressure. There are two interesting phenomena. First, [Formula: see text] or [Formula: see text] have the lowest formation energies for whole Fermi level at special environment condition (such as at [Formula: see text], about [Formula: see text] or [Formula: see text], about [Formula: see text]) and intrinsic [Formula: see text]-type doping of ZnO is possible by [Formula: see text] at these special conditions. Second, [Formula: see text] as donors have lowest formation energy for all Fermi level at high temperature and low oxygen partial pressure [Formula: see text], [Formula: see text]. According to our analysis, the [Formula: see text] could produce [Formula: see text]-type doping in ZnO at these special conditions and change [Formula: see text]-type ZnO to [Formula: see text]-type ZnO at condition from low temperature and high oxygen partial pressure to high temperature and low oxygen partial pressure.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献