Effects of promoter and dedoping process on electrorheological response of polyaniline-graft-chitosan copolymer

Author:

Cabuk Mehmet1ORCID,Yavuz Mustafa2ORCID,Unal H. Ibrahim3ORCID

Affiliation:

1. Metallurgical and Material Engineering Department, Engineering Faculty, Mersin University, Mersin, Türkiye

2. Chemistry Department, Sciences Faculty, Süleyman Demirel University, Isparta, Türkiye

3. Smart Materials Research Laboratory, Chemistry Department, Science Faculty, Gazi University, Ankara, Türkiye

Abstract

In this study, electrorheological (ER) properties of biodegradable and conducting polyaniline-graft-chitosan (PAni-g-CS) copolymer particles were investigated. For this purpose, PAni and PAni-g-CS particles were synthesized by using in situ oxidative radicalic polymerization method. At first, PAni and PAni-g-CS/silicone oil (SO) ER suspensions (15% V/V) were subjected to external electric field and they exhibited low ER activity. When the external electric field strengths ([Formula: see text] were increased, both the suspensions showed electrical breakdown. Therefore, virgin PAni and PAni-g-CS were first subjected to dedoping process by treating with 1.0 M NaOH(aq) and non-ionic surfactant Triton X-100 (T-X) surfactant to enhance the expected ER activity and prevent the electrical breakdown. But we observed that the addition of T-X as promoter had no significant effect on the ER activity. On the other hand, electric filed-induced viscosities of both the suspensions were observed to enhance after the dedoping (DD) process and electrical breakdown prohibited. After the DD process, DD PAni-g-CS/SO ER system exhibited the highest electric field-induced viscosity by reaching 400[Formula: see text]Pa[Formula: see text]⋅[Formula: see text]s at [Formula: see text][Formula: see text]kV/mm. The highest ER efficiency was also obtained for DD PAni-g-CS/SO system at 15% (V/V) as 79. Additionally, typical shear thinning non-Newtonian viscoelastic behavior was observed under externally applied E. The conduction model of DD PAni-g-CS/SO system was determined to well fit the conduction model by showing a slope of [Formula: see text] calculated from the E vb. yield stress graph. In conclusion, conducting and biodegradable-dedoped PAni-g-CS particles would be a good candidate for potential ER applications as dry-based ER materials having high colloidal stability of 76%.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3