Affiliation:
1. School of Science and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
Higher channel capacity and noise elimination are the key requirements for the implementation of long-distance quantum communication. As the additional degrees of freedom (DoF) of photons can be employed to achieve higher channel capacity and security beyond the polarizations DoF of photons, the photonic qubits are always employed as the flying qubits in quantum communication and quantum information processing. Here, exploiting the multiple DoFs of photons, we present an efficient quantum secure direct communication protocol based on the coding and manipulation of qubits on both the polarization and the orbital angular momentum of photons. Also, the numerical simulation is studied to further clarify the improvement of the channel capacity and the security. It is found that the channel capacity and the error rate (caused by eavesdropping) of the QSDC protocol which encoded on the polarization DoF and the OAM DoF is significantly higher than that of coding on only polarization DoF. We believe this work could provide more evidence for the applications of higher-dimensional qubits in quantum information science.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献