Affiliation:
1. Department of Mathematics-Physics, University of Haifa at Oranim, Tivon 36006, Israel
Abstract
Experimental studies of the transitions from a primary quantum Hall (QH) liquid at filling factor ν=1/k (with k an odd integer) to the insulator have indicated a "quantized Hall insulator" (QHI) behavior: while the longitudinal resistivity diverges with decreasing temperature and current bias, the Hall resistivity remains quantized at the value kh/e2. We review the experimental results and the theoretical studies addressing this phenomenon. In particular, we discuss a theoretical approach which employs a model of the insulator as a random network of weakly coupled puddles of QH liquid at fixed ν. This model is proved to exhibit a robust quantization of the Hall resistivity, provided the electron transport on the network is incoherent. Subsequent theoretical studies have focused on the controversy whether the assumption of incoherence is necessary. The emergent conclusion is that in the quantum coherent transport regime, quantum interference destroys the QHI as a consequence of localization. Once the localization length becomes much shorter than the dephasing length, the Hall resistivity diverges. We conclude by mentioning some recent experimental observations and open questions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献