Affiliation:
1. School of Mechanical and Electric Engineering, Sanming University, Sanming 365004, Fujian Province, China
2. ZYNP International Corporation, No. 69 Huaihe Avenue, Industrial Cluster District, Mengzhou City 454750, Henan Province, China
Abstract
The cylinder liner is a key part of an internal combustion engine. It always exposes at the worst conditions in the engine room: high temperatures, high pressures, large frictions, and large applying forces. Therefore, excellent physical properties such as surface hardness, tensile strength, heat resistance, and pressure resistance are essentially required as a cylinder liner material. Among them, the surface hardness and tensile strength are the most important properties which play decisive roles in producing a good cylinder liner. Researches on the development of new cast materials with different contents of alloying elements used in cylinder liners, which may exhibit high surface hardness as well as tensile strength, consistently draw much attention. In this regard, this study aims to experimentally investigate the effects of alloy compositions on the mechanical properties of ASBC materials for cylinder liners. Besides, we also replace the traditional-used high-price Ni with low-price Cu in order to reduce the production cost of cylinder liner materials. Results show that the best contents of C, Mo, and Cu for an as-cast banite iron (ACBI) material are found around 2.7%, 0.6–0.8%, and 0.82–1.0%, respectively, in which the highest hardness occurs. Those are found around 2.7%, 0.7–0.8%, and 0.94–1.0%, respectively, in which the highest tensile strength occurs. At the same time, without any reductions in performances of hardness and tensile strength, we successfully adopt Cu as a substitute for Ni as an important composition of ACBI material for cylinder liners.
Funder
Operational Funding of the Advanced Talents for Scientific Research
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献