The local structure of skutterudites: A view from inside the unit cell

Author:

Bridges Frank1

Affiliation:

1. Physics Department, University of California, Santa Cruz, California 95064, USA

Abstract

The skutterudites form a large class of compounds with many unusual properties, attributed in part to the novel crystal structure. The unit cell is cubic and is composed of eight sub-cubes formed by transition metal atoms. Six of the sub-cubes contain rings of atoms; the other two sub-cubes can be empty but are usually filled with rare earth or alkali earth atoms. These “filler” atoms can vibrate at low energies and hence are called “rattler” atoms. Here, the dynamics of various atom pairs are reviewed with a focus on the rattler atoms. Most of the work is based on extended X-ray absorption fine structure (EXAFS) studies but results obtained using other techniques, such as inelastic scattering experiments or atomic displacement parameters in diffraction, are also included. Although the main framework of the unit cell is often considered quite stiff, the stiffest springs in the system are only factors of 3–5 larger than the springs connecting the rattler to its neighbors. In addition, the environment about the atoms in the ring structures (e.g. Sb4 in CeFe4Sb[Formula: see text]) has a low symmetry and our recent EXAFS experiments suggest that the rings can be considered to be quasi-rigid units, and treated as a large atom. The restoring forces on the rings are asymmetric, with large forces perpendicular to the ring and weak forces in the direction toward a rattler. This suggests that some low energy modes that have been observed in these systems may be a correlated motion of the rattler atoms and the rings. In addition, the unusual result that the second neighbor effective spring constants are stiffer than the nearest neighbor bonds has been observed for several oxy-skutterudites. A simple one-dimensional (1D) model, of a chain of rattlers and rings, weakly coupled to the rest of the lattice has been developed which can explain these unusual results. These calculations also indicate that the thermal conductivity might be further suppressed using a composite formed of several types of nanoparticles rather than just multiple filling on the rattler sites.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3