Anti-dewetting of Cu thin film on nanostructured black Si template for continuous CVD growth of monolayer graphene

Author:

Abdullah Mohd Faizol1ORCID

Affiliation:

1. MIMOS Semiconductor (M) Sdn Bhd, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia

Abstract

The growth of high-quality continuous film of graphene on less than [Formula: see text]m-thick Cu film is proven to be a challenging task due to the solid-state dewetting of Cu during the high-temperature chemical vapor deposition (CVD) process. In this paper, we introduce the use of nanostructured black Si (b-Si) as a template for Cu evaporation to mitigate the dewetting of Cu thin film. Using a cold-wall CVD system at a process temperature of 825[Formula: see text]C, even Cu thickness, [Formula: see text] nm on polished SiO2/Si substrate is poor for maintaining Cu as a continuous film. If the polished SiO2/Si is replaced with SiO2/b-Si, the minimum [Formula: see text] nm is sufficient. According to the Cu trapping mechanism, moving Cu particle is trapped in the nanostructured trenches of SiO2/b-Si during annealing and CVD growth processes. Continuous monolayer graphene with a grain size of [Formula: see text]m without defect is obtained on Cu/SiO2/b-Si substrate. The improved adhesion of Cu to the SiO2/b-Si enables dry-transfer of graphene by mechanical peeling using a polyvinyl alcohol (PVA) film. Our solution is promising for obtaining flat graphene and a recyclable Cu/SiO2/b-Si substrate.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3