Photoelectric properties of monolayer 1T-CrS2 modified by doping non-metal atoms under strains

Author:

Liu Huaidong1ORCID,Yang Lu1ORCID,Sun Shihang1ORCID,Zhao Yanshen1ORCID,Wei Xingbin1ORCID

Affiliation:

1. School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China

Abstract

Based on the first principle, the change of photoelectric properties of non-metal-doped CrS2 under biaxial tension was studied. The formation energy indicates that the doping system is stable. Studies have shown that the partial doping system achieves a semiconductor metal phase transition. The strain opens the bandgap of the F-doped system, and the system changes from metal to n-type semiconductor. The Te-doped system realizes the transition from indirect bandgap to direct bandgap under the adjustment of 2% strain. The O and Se doping systems realize the reverse regulation of the bandgap under strain, and the conductivity gradually increases with the increase of strain. The absorption efficiency of Te doping under a certain strain is significantly enhanced, the static dielectric properties of the F doping system are increased by more than two times, the absorption spectrum response range is increased, and the absorption capacity of the system is enhanced. This lays a foundation for applying monolayer CrS2 in microelectronics and optoelectronics.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Key Laboratory of Polysaccharide Bioactivity Evaluation of Traditional Chinese Medicine of Liaoning Province

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3