Comparison of drift–diffusion model and hydrodynamic carrier transport model for simulation of GaN-based IMPATT diodes

Author:

Li Xiusheng1,Yang Lin’an1,Ma Xiaohua1

Affiliation:

1. State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China

Abstract

This paper presents a numerical simulation of a Wurtzite-GaN-based IMPATT diode operating at the low-end frequency of terahertz range. Conventional classical drift–diffusion model is independent of the energy relaxation effect at high electric field. However, in this paper, a hydrodynamic carrier transport model including a new energy-based impact ionization model is used to investigate the dc and high-frequency characteristics of an IMPATT diode with a traditional drift–diffusion model as comparison. Simulation results show that the maximum rf power density and the dc-to-rf conversion efficiency are larger for conventional drift–diffusion model because it overestimates the impact ionization rate. Through hydrodynamic simulation we revealed that the impact ionization rates are seriously affected by the high and rapidly varied electric field and the electron energy relaxation effect, which lead to the rf output power density and the dc-to-rf conversion efficiency falls gradually, and a wider operation frequency band is obtained compared with the drift–diffusion model simulation at frequencies over 310 GHz.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3