Noise test method for dual-gate MOSFET device

Author:

Jia Xiaofei1,Chen Wenhao2,Ding Bing1ORCID,He Liang3

Affiliation:

1. Department of Electronic and Information Engineering, Ankang University, Ankang 725000, China

2. Southwest China Institute of Electronic Technology, Chengdu 610063, China

3. Advanced Materials and Nano Technology School, Xidian University, Xi’an 710071, China

Abstract

In recent years, with the development of mesoscopic physics and nanoelectronics, the research on noise and testing technology of electronic components has been developed. It is well known that noise can characterize the transmission characteristics of carriers in nanoscale electronic components. With the continuous shrinking of the device size, the carrier transport of nanoscale MOSFET devices has been gradually transformed from the traditional drift-diffusion to become the quasi-ballistic or ballistic transport, and its current noise contains granular and thermal noise. The paper by Jeon et al. [The first observation of shot noise characteristics in 10-nm scale MOSFETs, in Proc. 2009 Symp. VLSI Technology (IEEE, Honolulu, 2009), pp. 48–49] presents the variation relation of 20 nm MOSFET current noise with source–drain current and voltage, and its current noise characteristic is between thermal noise and shot noise, so 20 nm MOSFET current noise is shot noise and thermal noise. The paper by Navid et al. [J. Appl. Phys. 101 (2007) 124501] shows through simulation that the 60 nm MOSFET current noise is suppressed shot noise and thermal noise. At present, the current noise has seriously affected the basic performance of the device, thus the circuit cannot work normally. Therefore, it is necessary to study the generation mechanism and characteristics of current noise in electronic components so as to suppress device noise, which can not only realize the reduction of device noise, but also play a positive role in the work-efficiency, life-span and reliability of electronic components.

Funder

China National Funds for Distinguished Young Scientists

Young Talent fund of University Association for Science and Technology in Shaanxi

Outstanding Young Talents Project in Shaanxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3