Affiliation:
1. Department of Computer Science and Engineering, University Institute of Technology, RGPV, Bhopal 462023, India
2. Department of Information Technology, University Institute of Technology, RGPV, Bhopal 462023, India
Abstract
Flying Ad-hoc Networks (FANETs) and Unmanned Aerial Vehicles (UAVs) are widely utilized in various rescues, disaster management and military operations nowadays. The limited battery power and high mobility of UAVs create problems like small flight duration and unproductive routing. In this paper, these problems will be reduced by using efficient hybrid K-Means-Fruit Fly Optimization Clustering Algorithm (KFFOCA). The performance and efficiency of K-Means clustering is improved by utilizing the Fruit Fly Optimization Algorithm (FFOA) and the results are analyzed against other optimization techniques like CLPSO, CACONET, GWOCNET and ECRNET on the basis of several performance parameters. The simulation results show that the KFFOCA has obtained better performance than CLPSO, CACONET, GWOCNET and ECRNET based on Packet Delivery Ratio (PDR), throughput, cluster building time, cluster head lifetime, number of clusters, end-to-end delay and consumed energy.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献