Why a magnetized quantum wire can act as an optical amplifier: a short survey

Author:

Kushwaha Manvir S.1

Affiliation:

1. Department of Physics and Astronomy, Rice University, P. O. Box 1892, Houston, TX 77251, USA

Abstract

This paper reviews the fundamental issues associated with the magnetoplasmon excitations investigated in a semiconducting quantum wire characterized by a harmonic confining potential and subjected to an applied (perpendicular) magnetic field. We embark on the charge–density excitations in a two-subband model within the framework of Bohm–Pines's random-phase approximation. The problem involves two length scales: [Formula: see text] and [Formula: see text], which characterize the strengths of the confinement and the magnetic field (B). Essentially, we focus on the device aspects of the intersubband collective (magnetoroton) excitation, which observes a negative group velocity between maxon and roton. Consequently, it leads to tachyon-like (superluminal) behavior without one's having to introduce the negative energies. Existence of the negative group velocity is a clear manifestation of a medium with population inversion brought about due to a metastable state caused by the magnetic field that satisfies the condition B > B th ; B th being the threshold value below which the magnetoroton does not exist. The interest in negative group velocity is based on anomalous dispersion in a medium with inverted population, so that gain instead of absorption occurs at the frequencies of interest. A medium with an inverted population has the remarkable ability of amplifying a small optical signal of definite wavelength, i.e. it can serve as an active laser medium. An extensive scrutiny of the gain coefficient suggests an interesting and important application: The electronic device designed on the basis of such magnetoroton modes can act as an optical amplifier. Examining the magnetic field dependence of the life-time of magnetorotons leads us to infer that relatively smaller magnetic fields are optimal.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3