Affiliation:
1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
Abstract
A stochastic dynamic model of a Kaplan turbine is established in this paper during the transient process. When the Kaplan turbine operates with fluctuating load, the synergistic relationship between the guide vanes and blades experiences random fluctuation resulting from the mechanical, hydraulic and signal factors. To study the effect of stochastic fluctuations of the synergistic relationship, Chebyshev polynomial approximation method is adopted to analyze the stochastic dynamic characteristics of the Kaplan turbine during the transient process. Using Chebyshev polynomial approximation, the stochastic model of the Kaplan turbine is simplified to its equivalent deterministic model, and the stochastic dynamic characteristics of the model are investigated in the transient process. The effects of stochastic intensity on the dynamic behaviors of the Kaplan turbine are analyzed by means of numerical simulation. Moreover, the influences of PID parameters on the stochastic dynamic characteristics of the Kaplan turbine are studied through bifurcation diagrams. Analysis of stochastic characteristics and dynamic behaviors suggests that transient performance improvement can be obtained by controlling the synergistic stochastic intensity and PID parameters.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献