Self-propelled collective motion with multiplicative scalar noise

Author:

Haghsheno Fatemeh1ORCID,Mehrafarin Mohammad1ORCID

Affiliation:

1. Physics Department, Amirkabir University of Technology, Hafez Ave, Tehran, Iran

Abstract

The emergence of order from initial disordered movement in self-propelled collective motion is an instance of nonequilibrium phase transition, which is known to be first order in the thermodynamic limit. Here, we introduce a multiplicative scalar noise model of collective motion as a modification of the original Vicsek model, which more closely mimics the particles’ behavior. We allow for more individual movement in sparsely populated neighborhoods, the mechanism of which is not incorporated in the original Vicsek model. This is especially important in the low velocity and density regime where the probability of a clear neighborhood is relatively high. The modification, thus, removes the shortcoming of the Vicsek model in predicting continuous phase transition in this regime. The onset of collective motion in the proposed model is numerically studied in detail, indicating a first-order phase transition in both high and low velocity/density regimes for systems with comparatively smaller size which is computationally desirable.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3