Fabrication of a novel liquid metal microelectrode in microfluidic chip

Author:

Gong Yanli1,Peng Bei1,Weng Xuan1,Jiang Hai1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

Abstract

Electrokinetics is a good fluid control tool in microfluidics and usually microelectrodes play important roles in such approach such as generating a desired electric field. Though the fabrication of two-dimensional (2D) microelectrodes has been relatively mature, they cannot generate uniform electric field in space. Three-dimensional (3D) microelectrodes developed more recently may solve the problem, however the fabrication process is usually complicated and requires micro-alignment platform. Non-toxic liquid metal is a good material for making electrodes that has been introduced into microfluidics. It can be injected directly into a microchannel to form an electrode, but its special physical properties make the injection process complex and difficult to control. In this study, we investigated an optimized manufacturing method of liquid metal microelectrode in a microchip by numerical analysis and experimental study. High quality microelectrodes on morphology and stability were successfully fabricated. A fluorescent enrichment experiment was performed using the developed microelectrode in a microfluidic chip. The result shows that the optimized fabrication method of microelectrode in this study provides a promising way for high quality and good performance liquid metal microelectrode formation, and paves the way for its versatile applications.

Funder

National Natural Science Foundation of China

Sichuan Province International Science, Technology and Innovation Cooperation Foundation

Applied Basic Research Programs of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3