Numerical study of non-Newtonian power-law fluids under low-frequency vertical harmonic vibration

Author:

Huo Qiang12,Wang Xiaopeng12ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China

2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, P. R. China

Abstract

Resonance Acoustic MixingⓇ(RAM) technology applies an external low-frequency vertical harmonic vibration to mix ultrafine granular materials and subsequently non-Newtonian fluids. Although this system is used for various applications, its mechanism is yet not well understood, especially in the mixing of non-Newtonian fluids. To address this gap in knowledge, a phase model of the shear-thinning and shear-thickening non-Newtonian power-law fluid in a low-frequency vertical harmonic vibration container is established in this study, and the different power-law index is also considered. During the initial mixing process, there is Faraday instability at the gas–liquid interface, and Faraday waves are related to the power-law index. With the continuous input of external energy, the flow field is further destabilized, so that the uniform mixing is finally completed. In addition, the rheology of non-Newtonian fluids is consistent with the constitutive relation of power-law fluids. The dynamic viscosity of shear-thinning non-Newtonian fluid decreases rapidly with the increase of mixing time, while the shear-thickening non-Newtonian fluid decreases rapidly with the increase of mixing time. The variation of shear rate for Newtonian and non-Newtonian fluids is identical. Finally, a proper vibration parameter for the high mixing efficiency of RAM is proposed.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3