Multiple slips on Darcy–Forchheimer unsteady flow manifested with Cattaneo–Christov heat flux over a stretching sheet

Author:

Kumari P. Vijaya1ORCID,Gangadhar K.2ORCID,Ganteda Charan Kumar3ORCID,Sulaiman Tukur Abdulkadir456ORCID

Affiliation:

1. Department of Mathematics, Qis College of Engineering and Technology, Ongole, Prakasam District 523272, Andhra Pradesh, India

2. Department of Mathematics, Andhra Kesari University, Ongole, Andhra Pradesh, India

3. Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522301, Andhra Pradesh, India

4. Near East University, Operational Research Center in Healthcare, Nicosia 99138, TRNC Mersin 10, Turkey

5. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

6. Department of Mathematics, Federal University Dutse, Jigawa, Nigeria

Abstract

This primary goal of this analysis is to investigate how several slips affect the flow, heat, and mass performance of Darcy–Forchheimer unstable behavior beyond a stretching sheet using a numerical analysis of the Soret effect. The novel constitutive model Cattaneo–Christov is illustrated to analyze the features of thermal relaxation time. The Cattaneo–Christov method is used to predict heat and mass transport. A surface that slanders and has varying thicknesses propels the flow. Through the use of local similarity transformations, the governing nonlinear partial differential equations reduce to the coupled ordinary differential equations and include the momentum, energy, and concentration equations. The altered ODEs are calculated numerically using the Runge–Kutta Fehlberg scheme and an efficient shooting procedure. The physical properties of the temperature, concentration, and fluid velocity profiles are shown visually and shed light on the change of several governing parameters. For example, in comparison to the classical Fourier’s heat model, our result suggests that the Cattaneo–Christov heat flux constitution has lower temperature and thermal boundary layer thickness. In the meantime, a high wall thickness parameter greatly upgrades the rate of heat transfer, and thermal relaxation has the opposite effect. Discussion is held regarding the effects of various miscellaneous variables on temperature, concentration, and velocity.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3