Time delay and non-Gaussian noise-induced stochastic stability and stochastic resonance for a metapopulation system subjected to a multiplicative periodic signal

Author:

Wang Kang-Kang12,Ye Hui13,Wang Ya-Jun1,Wang Ping-Xin1

Affiliation:

1. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. Complex Systems and Network Science Research Center, Southeast University, Nanjing 210096, China

3. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

In this paper, the stable state transformation and the effect of the stochastic resonance (SR) for a metapopulation system are investigated, which is disturbed by time delay, the multiplicative non-Gaussian noise, the additive colored Gaussian noise and a multiplicative periodic signal. By use of the fast descent method, the approximation of the unified colored noise and the SR theory, the dynamical behaviors for the steady-state probability function and the SNR are analyzed. It is found that non-Gaussian noise, the colored Gaussian noise and time delay can all reduce the stability of the biological system, and even lead to the population extinction. Inversely, the self-correlation times of two noises can both increase the stability of the population system and be in favor of the population reproduction. As regards the SNR for the metapopulation system induced by the noise terms and time delay, it is discovered that time delay and the correlation time of the multiplicative noise can effectively enhance the SR effect, while the multiplicative noise and the correlation time of the additive noise would all the time suppress the SR phenomena. In addition, the additive noise can effectively motivate the SR effect, but not alter the peak value of the SNR. It is worth noting that the departure parameter from the Gaussian noise plays the diametrical roles in stimulating the SR effect in different cases.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3