Demonstration of using HF-etchant mixed into CO2 to lift-off thin-film GaAs layers by supercritical fluid technology

Author:

Feng David Jui-Yang1,Kuo Heng1,Yang Cheng-Fu23ORCID

Affiliation:

1. Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

2. Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

3. Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

Abstract

The epitaxial lift-off (ELO) process based on selectively etching a thin sacrificial AlAs layer from GaAs substrate was performed using high-concentrated aqueous hydrofluoric (HF) etchant. However, because of using the wet etching method, the traditional ELO process has many drawbacks and limitations. Supercritical fluids (SCFs) naturally have the characteristics of low viscosity, high diffusivity, and zero surface tension. Therefore, the development of a gas-phase-like dry etching method based on mixing HF into CO2 and operating the mixture of HF/CO2 in SCFs condition as etchant is hereby proposed to overcome those bottlenecks existing in traditional wet ELO processes. However, there are no available experimental results for etching AlAs layers by HF in SCFs yet. Therefore, a HF-compatible corrosion-resistant high-pressure system was designed and built up to perform the idea. The capabilities of etching sample in supercritical CO2 (scCO2) had been systemically investigated under various pressures (2000–3000 psi) and temperatures (40–60[Formula: see text]C). Besides, the etching performances separately conducted by using aqueous-HF and anhydrous HF/Pyridine as the source etchant and mixing with scCO2 at a fixed temperature, pressure and etching time were also examined and compared under different equivalent HF concentrations. An evaluation of using acetone as the co-solvent mixed with HF/scCO2 mixture for enhancing the etch rate in different volume ratio of HF/co-solvent was further investigated and discussed. With this system, we demonstrate releasing a size of [Formula: see text] (width × length) and 3 [Formula: see text]m-thick free-standing GaAs sheet from a 150 nm AlAs sacrificial layer by the etching sample in HF/scCO2 mixture. The released GaAs sheet was also successfully transferred to a flexible PET substrate by using a PDMS stamp and an adhesive layer of NOA61.

Funder

Ministry of Science and Technology of Republic of China

NSYSU-NUK Joint Research Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3