Configurational mean-field reduced transfer matrix method for Ising systems

Author:

Kaya Tuncer1,Tambaş Başer2

Affiliation:

1. Department of Physics, Yıldız Technical University, 34220 Davutpasa-Istanbul, Turkey

2. Department of Physics, Istanbul Technical University, 34469 Maslak-Istanbul, Turkey

Abstract

A mean-field method for the hypercubic nearest-neighbor Ising system is introduced and applications to the method are demonstrated. The main idea of this work is to combine the Kadanoff’s mean-field approach with the model presented by one of us previously. The mean-field approximation is introduced with the replacement of the central spin in Ising Hamiltonian with an average value of particular spin configuration, i.e, the approximation is taken into account within each configuration. This approximation is used in two different mean-field-type approaches. The first consideration is a pure-mean-field-type treatment in which all the neighboring spins are replaced with the assumed configurational average. The second consideration is introduced by the reduced transfer matrix method. The estimations of critical coupling values of the systems are evaluated both numerically and also analytically by the using of saddle point approximation. The analytic estimation of critical values in the first and second considerations are [Formula: see text] and [Formula: see text] respectively. Obviously, both of the considerations have some significant deviation from the exact treatment. In this work, we conclude that the method introduced here is more appropriate physical picture than self-consistent mean-field-type models, because the method introduced here does not presume the presence of the phase transition from the outset. Consequently, the introduced approach potentially makes our research very valuable mean-field-type picture for phase transition treatment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3