Investigating the wetting behavior of polypropylene hydrophobic membrane using CF4 plasma treatment

Author:

Kiamehr Zeynab12ORCID,Mozaffari Samaneh1

Affiliation:

1. Department of Basic Sciences, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran

2. Department of Physics, Tafresh University, Tafresh, Iran

Abstract

Membrane wetting by liquid absorbents limits the performance of membrane contactor, which shows the necessity of using superhydrophobic membranes in these systems. In recent years, the use of plasma irradiation to modify polymer membranes has received much attention from researchers. In this experimental research, the polypropylene membrane surface was irradiated with CF4 plasma at different times to reduce the membrane wetting and create a superhydrophobic surface. The modified membranes were evaluated in terms of measurements of roughness and morphology, chemical properties, and hydrophilicity. In the results of the AFM * and SEM tests, the structural difference caused by the surface modification and the resulting roughness can be well observed. The FTIR results showed the creation of new functional groups due to the surface modification process. The physicochemical changes of the modified surface led to an increase in the CA § to 166. Finally, the performance of modified membranes was evaluated for protein adsorption, and the results indicated a significant decrease in adsorption for modified superhydrophobic membranes compared to the control membrane. Achieving superhydrophobic PP membranes by plasma treatment without damaging the physical structure of these membranes is a significant result that is simply not achieved by other methods because it causes the membrane tissue to disintegrate. It has also been shown that the conditions of plasma application play a decisive role in the hydrophobicity of modified surfaces.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3