Dynamical analysis of exact optical soliton structures of the complex nonlinear Kuralay-II equation through computational simulation

Author:

Iqbal Mujahid1ORCID,Lu Dianchen1ORCID,Seadawy Aly R.2ORCID,Alsubaie Nahaa E.3,Umurzakhova Zhanar4,Myrzakulov Ratbay4

Affiliation:

1. School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia

3. Mathematics Department, Khurmah University College, Taif University, Saudi Arabia

4. Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics, Astana, Kazakhstan

Abstract

In this paper, we successfully extracted the various types of soliton solutions for the complex nonlinear Kuralay-II equation through the improved F-expansion method with symbolic computational software Mathematica. The extracted soliton solutions for the Kuralay-II equation are interesting, novel and more general such as anti-kink wave solitons, dark solitons, kink wave solitons, bright solitons, periodic wave solitons, mixed solitons in bright-dark soliton shape, peakon solitons, and solitary wave structures. The graphical structure of some extracted solutions is visualized in 2D, 3D and contour plottings with imaginary, real, and absolute values of the functions by using the numerical simulation. The proposed research will contribute to advancing our knowledge about the complex nonlinear Kuralay-II equation and demonstrating the applicability to the proposed approach to investigate other higher-order complex nonlinear equations. The successful investigation demonstrated that the proposed method is effective, simple, more powerful, efficient and can be utilized on a variety of other nonlinear equations. The explored solitary waves and optical solitons will play an important role in the investigation of nonlinear phenomena in various domains of science and engineering.

Funder

Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3