Study on dynamic effective parameters of bilayer perforated thin-plate acoustic metamaterials

Author:

Xu Yicai1ORCID,Wu Jiu Hui1,Cai Yongqing1

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

In this paper, dynamic effective parameters of mass-type and stiffness-type bilayer perforated thin-plate acoustic metamaterials (MBPM and SBPM) are investigated by simulations and experiments. Dynamic effective parameters are calculated by the retrieval method, and formation mechanisms of special effective parameters are analyzed by simulated fields. Divergent effective parameters are produced by anti-resonances of coupled perforations or coupled perforated thin-plates, zero effective parameters are produced by resonances of coupled perforated thin-plates. The impacts of perforation parameters on dynamic effective parameters for symmetric and asymmetric BPMs are systemically studied, the simulated and experimental results both show that variation trends of resonance and anti-resonance frequencies of mass-type bilayer perforated thin-plate acoustic metamaterial (MBPM) are different from stiffness-type bilayer perforated thin-plate acoustic metamaterial (SBPM), because perforations mainly change system mass in MBPM and system stiffness in SBPM, respectively. Dynamic effective parameters are bi-anisotropic in asymmetric BPM, and doubly negative effective parameters are achieved by coupled perforations when plan wave normal incident from the side with smaller perforation parameters. A modified retrieval method is proposed to calculate unified effective parameters for the asymmetric BPM, and the unified effective parameters equal to averaged effective parameters of two symmetric BPMs. This work systematically studies dynamic effective parameters of bilayer perforated structures, which has a great guiding significance in design of perforated acoustic devices.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3